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(57) ABSTRACT

Utilization of user interface inputs, from remote client
devices, in controlling robot(s) in an environment. Imple-
mentations relate to generating training instances based on
object manipulation parameters, defined by instances of user
interface input(s), and training machine learning model(s) to
predict the object manipulation parameter(s). Those imple-
mentations can subsequently utilize the trained machine
learning model(s) to reduce a quantity of instances that
input(s) from remote client device(s) are solicited in per-
forming a given set of robotic manipulations and/or to
reduce the extent of input(s) from remote client device(s) in
performing a given set of robotic operations. Implementa-
tions are additionally or alternatively related to mitigating
idle time of robot(s) through the utilization of vision data
that captures object(s), to be manipulated by a robot, prior to
the object(s) being transported to a robot workspace within
which the robot can reach and manipulate the object.
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EFFICIENT ROBOT CONTROL BASED ON
INPUTS FROM REMOTE CLIENT DEVICES

BACKGROUND

[0001] In industrial or commercial settings, a robot is
often pre-programmed to repeatedly perform a particular
task. For example, a robot can be pre-programmed to
repeatedly apply fasteners to particular assembly component
(s) in an assembly line. Also, for example, a robot can be
pre-programmed to repeatedly grasp and move particular
assembly component(s) from a fixed first location to a fixed
second location. In grasping object(s), a robot can use a
grasping end effector such as an “impactive” end effector
(e.g., applying force to areas of the object(s) using “claws”,
or other digits), an “ingressive” end effector (e.g., physically
penetrating object(s) using pins, needles, etc.), an “astric-
tive” end effector (e.g., using suction or vacuum to pick up
object(s)), and/or one or more “contigutive” end effectors
(e.g., using surface tension, freezing, or adhesive to pick up
object(s)).

[0002] Such approaches can work well in environments
where constrained actions are repeatedly performed on a
constrained group of component(s). However, such
approaches can fail in environments where a robot is tasked
with performing a large variety of actions and/or performing
action(s) on a diverse group of components, optionally
including new component(s) for which the robots have not
been pre-programmed. Moreover, such approaches require
significant engineering effort (and associated usage of com-
putational resources) in pre-programming the robot. Further,
to accommodate the robots in the environment, such
approaches can require significant reconfiguring of an indus-
trial or commercial environment. Separately, some human in
the loop approaches have been proposed where humans
repeatedly provide the same type of guidance for assisting a
robot in performance of a task. However, such approaches
can suffer from various drawbacks. For example, some
approaches can result in robots being idle while soliciting
and/or awaiting human guidance, which results in inefficient
operation of the robots. Also, for example, some approaches
always solicit human guidance and/or the same type of
guidance. This limits the ability of the robotic operation to
operate more efficiently and/or the ability of the humans to
increase their productivity.

SUMMARY

[0003] Implementations disclosed herein relate to utiliza-
tion of user interface inputs, from remote client devices, in
controlling robot(s) in an environment. An instance of user
interface input(s), provided at a remote client device, indi-
cates (directly or indirectly) one or more object manipula-
tion parameter(s) to be used by a robot in manipulating at
least one object. For example, the object manipulation
parameter(s) indicated by an instance of user interface
input(s) can include: a grasp pose; a placement pose; a
sequence of waypoint(s) to encounter in traversing to a grasp
pose; a sequence of waypoints to encounter in traversing
toward a placement pose (after grasping the object); a full
path or trajectory (i.e., a path with velocity, acceleration,
jerk, and/or other parameter(s)) in traversing to and/or from
a manipulation pose (e.g., a grasp pose or other manipulation
pose); and/or other object manipulation parameter(s) such
as, but not limited to, those described in additional detail
herein.
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[0004] The user interface input(s) of an instance are pro-
vided with reference to a visual representation that includes
an object representation of the at least one object. The visual
representation can also optionally include an environmental
representation of other environmental objects (e.g., a work
surface, a container in which the at least one object is to be
placed) and/or a robot representation of all or parts of the
robot. The visual representation can be rendered, for
example, on a standalone display screen controlled by the
remote client device or a virtual reality (VR) headset con-
trolled by the remote client device. The user interface
input(s) can be provided, for example, via a mouse, a
touchscreen, VR hand controllers, and/or VR gloves. Addi-
tional description is provided herein of example visual
representations and how can they be rendered, including
description of implementations that generate visual repre-
sentations in a manner that reduces network traffic and/or
reduces latency in rendering the visual representations.

[0005] Some implementations disclosed herein are
directed to generating training instances based on object
manipulation parameters that are defined by instances of
user interface input(s). Those implementations are further
directed to training machine learning model(s), based on the
training instances, for use of the trained machine learning
models in predicting the object manipulation parameter(s).
In some of those implementations, a training instance can be
generated and/or labeled as a positive training instance,
responsive to determining that a measure of success, of a
manipulation attempted based on corresponding object
manipulation parameter(s), satisfies a threshold. The mea-
sure of success can be generated based on sensor data from
one or more sensors, and can be generated in a manner that
is dependent on the manipulation being performed. As one
example, if the manipulation is a grasp with an impactive
end effector, the measure of success can indicate whether the
grasp was successful. The measure of success can be based
on, for instance, sensor data from sensor(s) of the impactive
end effector (e.g., using positions of digit(s), determined
based on data from a position sensor and/or torque(s)
indicated by torque sensor(s) to determine whether the
impactive end effector is grasping the object); vision data
from vision sensor(s) of the robot (e.g., to determine whether
the impactive end effector is grasping the object and/or
whether the object has moved from its prior location),
weight sensor(s) in the environment (e.g., to determine
whether the object was lifted from a location and/or placed
in another location), etc. As another example, if the manipu-
lations include a grasp of an object and a subsequent
placement of the object in a container, a measure of success
of the placement manipulation can indicate whether the
object was successfully placed in the container and/or a
degree to which the placement in the container conforms to
a desired placement. As yet another example, if the manipu-
lations includes the joining of two objects, a measure of
success of the placement manipulation can indicate whether
the objects were successfully joined together and/or a degree
of accuracy of their joinder.

[0006] Implementations that train machine learning model
(s) based on the generated training instances, are further
directed to subsequently utilizing the trained machine learn-
ing model(s). Utilizing the trained machine learning model
(s) reduces a quantity of instances that input(s), from remote
client device(s), are solicited in performing a given set of
robotic manipulations (thereby reducing network traffic)



US 2021/0023711 Al

and/or reduces the extent of input(s) from remote client
device(s) in performing a given set of robotic operations
(thereby providing efficient resource utilization at the remote
client device(s)). Those implementations can enable the
robot(s) in an environment to operate more efficiently by
reducing instances of and/or durations of the robot(s) sitting
idle while awaiting user interface input(s). Those implemen-
tations can additionally increase productivity of an operator
of'a remote client device, by enabling the operator to provide
input(s) for a greater quantity of manipulations and/or for a
greater quantity of robots.

[0007] As one particular example, assume one or more
robots are newly deployed in a given environment for
performing manipulations that each include grasping a cor-
responding object from a conveyor belt and placing the
object in an appropriate one of N available containers (e.g.,
shipping boxes). At first, user interface input(s) can be
solicited, for each manipulation, to determine object
manipulation parameters that include: a sequence of way-
point(s) to encounter in traversing to a grasp pose for
grasping the object; the grasp pose; a sequence of waypoints
to encounter in traversing toward an appropriate one of the
N available containers; and a placement pose for placing the
object in the container. Those determined manipulation
parameters can be utilized to control the robot(s) in per-
forming the manipulations.

[0008] Over time, training instances can be generated, for
each of one or more machine learning models, based on
corresponding vision data (and/or other sensor data), one or
more of the object manipulation parameters, and optionally
based on measures of success. Each of the machine learning
models can be trained for processing vision data and/or other
sensor data, in predicting one or more corresponding
manipulation parameter(s). Further, the machine learning
model(s) can be trained based on the training instances. For
example, assume a machine learning model trained for use
in processing vision data to generate a corresponding prob-
ability for each of N grasp poses. Positive training instances
can be generated based on corresponding vision data and a
corresponding grasp pose defined by user interface input, for
manipulations that included a successful grasp (as deter-
mined based on a measure of success for the grasp).
[0009] A trained machine learning model can then be at
least selectively utilized in predicting one or more corre-
sponding object manipulation parameters that are then at
least selectively utilized in controlling the robot(s). For
example, a predicted object manipulation parameter can be
automatically utilized (without prompting for confirmatory
user interface input) and/or can be utilized after presenting
an indication of the predicted object manipulation parameter
(e.g., as part of a visual representation) and receiving
confirmatory user interface input in response. In these and
other manners, an object manipulation parameter can be
determined and utilized without requiring user interface
input (e.g., when it is automatically utilized) and/or with a
reduced amount of user interface input (e.g., when confir-
matory user interface input is provided in lieu of more time
consuming full input to define the object manipulation
parameter). This can reduce a duration of time needed to
determine object manipulation parameters, enabling robots
and/or remote operators to operate more efficiently.

[0010] In some implementations, a trained machine learn-
ing model is only utilized, in predicting object manipulation
parameters that are at least selectively utilized, after deter-
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mining one or more conditions are satisfied. The one or more
conditions can include, for example, at least a threshold
amount of training and/or validation of the trained machine
learning model. Validation of the trained machine learning
model can include comparing predictions, generated using
the machine learning model, to ground truth object manipu-
lation parameters that are based on user interface input—
optionally for instances of vision data (and/or other sensor
data) on which the machine learning model has not been
trained. In various implementations, and as described herein,
a trained machine learning model can continue to be trained
even after it is actively utilized in predicting object manipu-
lation parameters that are at least selectively utilized in
operations of a robot. For example, additional training
instances can be generated based on predicted and utilized
object manipulation parameters, and labeled as positive or
negative based on determined measures of success. Also, for
example, additional training instances can be generated
based on predicted object manipulation parameters, and
labeled as negative if user interface input rejected the
predicted object manipulation parameters.

[0011] As one particular example, assume again the
machine learning model trained for use in processing vision
data to generate a corresponding probability for each of N
grasp poses. When vision data is processed, using the trained
machine learning model, that results in a probability for a
corresponding grasp pose that exceeds a first threshold (e.g.,
85% or other threshold), the grasp pose can be utilized
automatically and without prompting for confirmatory user
interface input. If no grasp pose exceeds the first threshold,
but the probability for grasp pose(s) do exceed a second
threshold (e.g., 50% or other threshold), indication(s) of one
or more of those grasp pose(s) can be presented, along with
an object representation in the visual representation, and one
utilized only if confirmatory input is directed to that grasp
pose. If no grasp pose exceeds the first threshold or the
second threshold, then user interface input can be solicited
for determining the grasp pose, without providing any
indication of the predicted grasp poses(s). The grasp pose
determined based on the user interface input can then be
utilized in generating a training instance, optionally also
considering a measure of success of the grasp. The training
instance can then be utilized to further train the model. It is
noted that such a training instance is a “hard negative”
training instance, that can be particularly beneficial in effi-
ciently updating parameters of the machine learning model
to increase accuracy and/or robustness of the model.

[0012] Accordingly, for a given deployment of robot(s) in
an environment, instances of user interface input can ini-
tially be utilized to determine object manipulation parameter
(s) that are utilized in controlling the robot(s) in performing
manipulation(s). Further, training instances can be generated
based on the object manipulation parameter(s) determined
using the instances of user interface input, and based on
corresponding vision data and/or other sensor data, and
optionally based on measures of success determined based
on sensor data. The training instances can be utilized to train
machine learning model(s) for utilization in predicting the
object manipulation parameter(s). In response to satisfaction
of one or more conditions, a trained machine learning model
can then be brought “online”, and utilized in generating
predicted object manipulation parameter(s). The predicted
object manipulation parameters are at least selectively auto-
matically utilized in controlling the robot(s) and/or corre-



US 2021/0023711 Al

sponding indications of the predicted object manipulation
parameter(s) are rendered on remote client device(s), and
utilized if confirmatory user interface input is received in
response. Further, even after being brought online, the
trained machine learning model can continue to be trained,
increasing its accuracy and efficiency, thereby increasing the
quantity of instances in which predictions can be automati-
cally utilized in controlling the robot(s) and/or rendered as
suggestions for confirmatory approval.

[0013] In these and other manners, robots can be deployed
in a new environment and/or for new tasks, and immediately
utilized without requiring significant usage of engineering
and/or computational resources prior to deployment. For
example, object manipulation parameter(s) utilized initially
at deployment can be based heavily (or even exclusively) on
user interface input(s) from remote devices. However, over
time, the user interface input(s) from remote devices can be
utilized to train machine learning model(s) that are brought
online to reduce an amount and/or extent of user interface
input(s) required in operating the robot(s) in the environ-
ment. This enables the robot(s) to operate more efficiently in
the environment and reduces an amount of network traffic to
remote device(s) for a given amount or robotic manipula-
tions. Further, this enables operator(s) of the remote client
device(s) to assist in control of a greater quantity of robotic
manipulations, increasing productivity of the operator(s) and
enabling increased monetary compensation for the operator
().

[0014] Some implementations disclosed herein are addi-
tionally or alternatively directed to particular technique(s)
for determining object manipulation parameter(s), for
manipulating a given object, based on user interface input(s)
from remote operators. Some of those implementations are
directed to techniques that mitigate (e.g., reduce or elimi-
nate) idle time of robot(s) while awaiting provisioning of the
user interface input(s). Mitigating idle time of robot(s)
increases the overall efficiency of the robot operations.

[0015] Some implementations seek to mitigate idle time of
robots through the utilization of vision data that captures
object(s), to be manipulated by a robot, prior to the object(s)
being transported to a robot workspace within which the
robot can reach and manipulate the object. For example,
vision component(s) (e.g., monographic and/or stereo-
graphic cameras, Lidar component(s), and/or other vision
component(s)) can have a field of view of a first area of an
environment that is disparate from the robot workspace.
Vision data from the vision components can capture features
of an object when it is in the first area prior to that object
being transported to the robot workspace. For instance, the
first area can be a portion of a conveyor system that
transports the objects from the portion to the robot work-
space. The vision data capturing the object in the first area
can be used to generate a visual representation that includes
at least an object representation, of the object, that is
generated based on object features of the object captured in
the vision data.

[0016] Prior to completion of transporting of the object to
the robot workspace (e.g., while the object is being trans-
ported by the conveyor system, but before its arrival in the
robot workspace), the visual representation can be transmit-
ted to a remote client device. Further, data can be received
from the remote client device prior to completion of trans-
porting of the object to the robot workspace, where the data
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is generated based on user interface input directed at the
visual representation when rendered at the remote client
device.

[0017] The received data indicates, directly or indirectly,
one or more object manipulation parameters for manipulat-
ing the object in the robot workspace. Accordingly, the
object manipulation parameters can be determined based on
the data, and can optionally be determined prior to comple-
tion of transporting of the object to the robot workspace. The
determined object manipulation parameters can then be
utilized in controlling the robot to cause the robot to manipu-
late the object when the object is within the robot workspace
after it is transported to the robot workspace. Since at least
the visual representation is transmitted and the responsive
data is received prior to completion of transporting of the
object to the robot workspace, the robot can quickly manipu-
late the object, based on manipulation parameters deter-
mined based on the data, once the object is within the robot
workspace. For example, the robot can determine, based on
vision data from its own vision components, when the object
is within the robot workspace, and operate according to the
object manipulation parameters responsive to such a deter-
mination. The robot can optionally await the object to be at
a pose that corresponds to a pose for which the object
manipulation parameters are defined, or can transform the
object manipulation parameters to a newly detected pose of
the object in the robot workspace (e.g., when it varies from
that for which the object manipulation parameters were
defined). If the robot workspace itself includes a conveyor
portion via which the object is transported, that conveyor
portion can optionally be temporarily halted while the robot
manipulates the object. In other implementations, the object
can be transported to the robot workspace using a conveyor
or other transportation mean(s) (e.g., an air tube, a separate
transportation robot, by a human), and the robot workspace
itself may not include a conveyor portion.

[0018] Optionally, where trained machine learning model
(s) have been brought online for use in predicting object
manipulation parameter(s), the vision data from the first area
can be utilized in predicting object manipulation parameter
(s). This enables object manipulation parameter(s) to be
predicted prior to completion of transporting of the object to
the robot workspace. The predicted object manipulation
parameter(s) can be automatically used as some of the object
manipulation parameter(s), and/or indications of the pre-
dicted object manipulation parameter(s) can be provided
with the visual representation—and one or more of the
predicted object manipulation parameter(s) utilized if the
received data indicates confirmation of the predicted object
manipulation parameter(s).

[0019] In some implementations, poses(s) of the vision
component(s) in the first area and pose(s) of the robot vision
component(s) are known, enabling determination of a trans-
formation between a reference frame of the vision compo-
nent(s) in the first area and a robot frame of the robot vision
component(s). Using this transformation enables the inputs
at the remote client device to be defined directly in the robot
frame, or to be defined initially in the first frame and then
transformed to the robot frame.

[0020] Insome implementations, the visual representation
transmitted to the remote client device includes an object
representation of the object and optionally one or more
object representation(s) of other nearby dynamic object(s)
(dynamic in the first area), but omits other portion(s) of the
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first area that are static. In some of those implementations,
only representations of the object and optionally nearby
dynamic objects are rendered at the remote client device. In
some other implementations, all or portions of the robot
and/or robot workspace are also rendered at the remote
client device (despite not being captured in the vision data
that captures the first area). For example, the remote client
device can execute a robotic simulator, or be in communi-
cation with an additional device executing the robotic simu-
lator. The robotic simulator can simulate all or parts of the
robot and/or all or parts of the robot workspace, and can
render a simulation of the object along with the robot
simulation and/or robot workspace simulation. The pose of
the object relative to the robot simulation and/or robot
workspace simulation can be determined using the afore-
mentioned transformation. This can enable a human opera-
tor to provide user interface input(s) that manipulate the
robot simulation to define object manipulation parameter(s).
For example, to define a grasp pose a human operator can
provide user interface input(s) that adjust the robot simula-
tion until it is in a desired pose, then provide further user
interface input(s) to define that desired pose as the grasp
pose.

[0021] Implementations that simulate the robot and/or
robot workspace enable smaller data size visual representa-
tions to be transmitted from the environment to remote client
device(s). This can be a result of those transmissions defin-
ing only dynamic object(s), not defining static features of the
robot workspace, and/or not defining features of the robot. In
addition to conserving network resources, this can mitigate
delay in rendering the visual representation at the remote
device, as the smaller data size can be transmitted more
quickly to the remote client device and/or rendered more
quickly at the remote client device. This mitigating of delay
can likewise mitigate idle time of robots. Moreover, it is
noted that even in implementations where an object repre-
sentation is generated based on robot vision data (in lieu of
vision data from a disparate area), simulating the robot
and/or robot workspace can still enable smaller data size
visual representations to be transmitted—and mitigate idle
time of robots.

[0022] Some implementations additionally or alterna-
tively seek to mitigate idle time of robots through generating
object representations, of visual representations to be ren-
dered at a client device, that render objects with less
accuracy than full representations, but are a smaller data size
than full representations. For example, an object can be
represented by one or more bounding boxes and/or other
bounding shapes that approximate surfaces of the objects.
For instance, an object can be defined by a plurality of
connected bounding boxes, each of which can be defined by
a center point, a height dimension, and a width dimension—
which comprises significantly less data than a representation
that defines color, texture, and/or depth for each pixel or
voxel that corresponds to a surface of the object. In addition
to conserving network resources, the less accurate object
representations can mitigate delay in rendering the visual
representation at the remote device, as the smaller data size
can be transmitted more quickly at the remote client device
and/or rendered more quickly at the remote client device.
Moreover, the less accurate object representations can
obfuscate or remove potentially sensitive data from object

Jan. 28, 2021

(s), or obfuscate the objects themselves, preventing opera-
tors of remote devices from ascertaining the data and/or
objects.

[0023] Although some examples are described herein with
reference to manipulations that include grasping and/or
placing objects, it is understood that techniques described
herein can be utilized for a variety of robotic manipulations
on objects. For example, techniques can be utilized for a
manipulation that includes pushing and/or pulling an object
to move it to a different location and/or to mate it with
another object. Also, for example, techniques can be utilized
for a manipulation that includes grasping a first object,
grasping a second object, coupling the first and second
object together, and placing the coupled object in a particular
location. As yet another example, techniques can be utilized
for a manipulation that includes operating on an object with
an end effector that includes an etching tool, a screwdriver
tool, a cutting tool, and/or other tool(s).

[0024] The above description is provided as an overview
of some implementations of the present disclosure. Further
description of those implementations, and other implemen-
tations, are described in more detail below.

[0025] Other implementations may include a transitory or
non-transitory computer readable storage medium storing
instructions executable by one or more processors (e.g.,
central processing unit(s) (CPU(s)), graphics processing
unit(s) (GPU(s)), and/or tensor processing unit(s) (TPU(s))
to perform a method such as one or more of the methods
described above and/or elsewhere herein. Yet other imple-
mentations may include a system of one or more computers
and/or one or more robots that include one or more proces-
sors operable to execute stored instructions to perform a
method such as one or more of the methods described above
and/or elsewhere herein.

[0026] It should be appreciated that all combinations of
the foregoing concepts and additional concepts described in
greater detail herein are contemplated as being part of the
subject matter disclosed herein. For example, all combina-
tions of claimed subject matter appearing at the end of this
disclosure are contemplated as being part of the subject
matter disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1A illustrates an example environment in
which implementations described herein can be imple-
mented.

[0028] FIG. 1B illustrates an example of how components
of FIG. 1A may interact in accordance with various imple-
mentations described herein.

[0029] FIGS. 2A, 2B, 2C, 2D, 2E, and 2F each illustrate
an example of rendering, at a remote client device, a visual
representation that includes an object representation of an
object to be manipulated by a robot, and examples of user
interface inputs that can be provided to define and/or con-
firm object manipulation parameter(s) for manipulation of
the object by the robot.

[0030] FIG. 3 is a flowchart illustrating an example
method of causing a robot to manipulate an object in
accordance with object manipulation parameter(s) deter-
mined based on data generated, at a remote client device,
responsive to a visual representation that includes an object
representation of the object.

[0031] FIG. 4 is a flowchart illustrating an example
method of generating training instances based on robotic
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object manipulation attempts, and using the training
instances in training prediction model(s).

[0032] FIG. 5 is a flowchart illustrating an example
method of selectively utilizing trained prediction model(s) in
determining object manipulation parameter(s) for use by a
robot in manipulating objects.

[0033] FIG. 6 is a flowchart illustrating an example
method of training a prediction model, validating the pre-
diction model, deploying the prediction model, and option-
ally further training the deployed prediction model.

[0034] FIG. 7 schematically depicts an example architec-
ture of a robot.
[0035] FIG. 8 schematically depicts an example architec-

ture of a computer system.

DETAILED DESCRIPTION

[0036] FIG. 1A illustrates an example environment in
which implementations described herein can be imple-
mented. FIG. 1A includes a first robot 170A and associated
robotic vision component 174A, a second robot 170B and
associated robotic vision component 174B, and an addi-
tional vision component 194. The additional vision compo-
nent 194 can be, for example, a monographic camera (e.g.,
generating 2D RGB images), a stereographic camera (e.g.,
generating 2.5D RGB images), a laser scanner (e.g., gener-
ating 2.5D “point clouds™), and can be operatively con-
nected to one or more systems (e.g., the system 110)
disclosed herein. Optionally, multiple additional vision com-
ponents can be provided and vision data from each utilized
as described herein. The robotic vision components 174A
and 174B can be, for example, a monographic camera, a
stereographic camera, a laser scanner, and/or other vision
component—and vision data therefrom can be provided to
and utilized by corresponding robots 170A and 1708 as
described herein. Although illustrated adjacent to the robots
170A and 1708 in FIG. 1A, in other implementations robotic
vision components 174A and 174B can alternatively be
coupled directly to the robots 170A and 1708 (e.g., attached
near the end effectors 172A and 172B).

[0037] The robots 170A and 1708, robotic vision compo-
nents 174 A and 174B, and additional vision component 194
are all deployed in an environment, such as a manufacturing
facility, a packaging facility, or other environment. Although
the environment can include additional robots and/or addi-
tional vision components, only robots 170A and 1708, and
additional vision component 194, are illustrated in FIG. 1 for
simplicity.

[0038] Robots 170A and 1708 are each a “robot arm”
having multiple degrees of freedom to enable traversal of a
corresponding grasping end effector 172A, 172B along any
of a plurality of potential paths to position the grasping end
effector in desired locations. Robots 170A and 1708 each
further controls two opposed “claws” of their corresponding
grasping end effector 172A, 172B to actuate the claws
between at least an open position and a closed position
(and/or optionally a plurality of “partially closed” positions).
Although particular robots 170A and 1708 are illustrated in
FIG. 1A, additional and/or alternative robots may be uti-
lized, including additional robot arms that are similar to
robots 170A and 1708, robots having other robot arm forms,
robots having a humanoid form, robots having an animal
form, robots that move via one or more wheels, an
unmanned aerial vehicle (“UAV”), and so forth. Also,
although particular grasping end effectors 172A and 172B
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are illustrated in FIG. 1A, additional and/or alternative end
effectors may be utilized (or even no end effectors), such as
alternative impactive grasping end effectors (e.g., those with
grasping “plates”, those with more or fewer “digits™/
“claws”), “ingressive” grasping end effectors, “astrictive”
grasping end effectors, or “contiguity” grasping end effec-
tors, or non-grasping end effectors (e.g., welding tools,
cutting tools, etc.). For example, an astrictive end effector
with a plurality of suction cups can be used in picking and/or
placing a plurality of objects (e.g., four objects can be picked
and placed at once through usage of the multiple suction
cup(s).

[0039] Robot 170A can access a robot workspace 101A
that, in FIG. 1A, includes sunglasses 192A on a conveyor
portion 103A of a conveyor system, and also includes a
container 193A. The robot 170A can utilize object manipu-
lation parameters, determined as described herein, in grasp-
ing the sunglasses 192A and placing them appropriately in
the container 193A. Other objects can be on the conveyor
portion 103 A in the robot workspace 101A at different times,
as can different containers (e.g., the containers can be placed
by a separate system or be on a separate conveyor system).
For example, as the conveyor system moves, other objects
will be transported into the robot workspace 101A and can
be manipulated by the robot 170A while in the robot
workspace 170A. The robot 170A can likewise utilize cor-
responding object manipulation parameters for picking and
placing such objects, and/or performing other manipulations
on such objects.

[0040] Robot 170B can access a robot workspace 1018
that, in FIG. 1A, includes stapler 192B on a conveyor
portion 103B of the conveyor system, and also includes a
container 193B. The robot 170B can utilize object manipu-
lation parameters, determined as described herein, in grasp-
ing the stapler 192B and placing it appropriately in the
container 193B. Other objects can be on the conveyor
portion 103B in the robot workspace 1018 at different times,
as can different containers. The robot 170B can likewise
utilize corresponding object manipulation parameters for
picking and placing such objects, and/or performing other
manipulations on such objects.

[0041] The additional vision component 194 has a field of
view of an area 101C of the environment that is disparate
from the robot workspace 101 A and disparate from the robot
workspace 1018. In FIG. 1A, the area includes a conveyor
portion 103C of the conveyor system, and also include a
spatula 192C. The area 101C can be “upstream” of the robot
workspace 101A and/or the robot workspace 1018, in that
objects to be manipulated first pass through the area 101
prior to being transported to the robot workspace 101A or
the robot workspace 1018. For example, the conveyor
system can first pass objects through the area 101C before
those objects are routed, by the conveyor system, to either
the robot workspace 101A or the robot workspace 1016. For
instance, in FIG. 1A the spatula 192C is in the area 101C, but
has not yet been transported to the robot workspace 101 A or
the robot workspace 1016.

[0042] As described in detail herein, in various implemen-
tations additional vision component 194 can capture vision
data that captures features of the spatula 192C. Further, the
vision data can be utilized, by system 110 (described below),
in determining object manipulation parameter(s) for
enabling the robot 170A or robot 170B to manipulate (e.g.,
pick and place) the spatula 192C. For example, the system
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110 can determine the object manipulation parameter(s)
based at least in part on user interface input(s), from a
remote client device 130, directed at a visual representation
that is generated at least in part on the vision data captured
by additional vision component 194 (e.g., based at least in
part on object features, of the vision data, that capture
features of the spatula 192C). Through utilization of the
additional vision component 194 that is “upstream” of the
robot workspaces 101A and 1016, the visual representation
can be provided to the remote client device 130, user
interface inputs provided at the remote client device 130,
and/or object manipulation parameter(s) determined based
on data that corresponds to the user interface input(s)—
before the spatula 192C is in the robot workspace 101A or
robot workspace 101B (i.e., prior to completion of trans-
porting of the spatula to either of the robot workspaces
101A, 101B). In these and other manners, robots 170A and
170B can operate more efficiently, as the object manipula-
tion parameter(s) for manipulating objects can be quickly
determined, optionally before the objects even reach the
robot workspaces 101A and 1016.

[0043] The example environment of FIG. 1A also includes
a system 110, the remote client device 130, a training data
engine 143, a training data database 152, a training engine
145, and one or more machine learning model(s) 165 (also
referred to herein as “prediction model(s)”).

[0044] The system 110 can be implemented by one or
more computing devices. The one or more computing
devices can be located in the environment with the robots
170A and 170B, and/or can be located in a remote server
farm. The system 110 includes one or more prediction
engines 112, a visual representation engine 114, and a
manipulation parameters engine 116. The system 110 can
perform one or more (e.g., all) of the operations of method
300 of FIG. 3 and/or method 500 of FIG. 5, both of which
are described in detail below.

[0045] The remote client device 130 can optionally be
within the environment but, in various implementations, is
located in a disparate structure that can be miles away from
the environment. The remote client device 130 includes a
display engine 132, input engine(s) 134, and input device(s)
136. It is noted that in various implementations multiple
remote client devices 130 are accessible to the system 110 at
any given time. In those implementations, a given remote
client device 130 can be selected at a given time based on
various considerations such as whether the given remote
client device 130 has any pending requests in its queue, a
quantity of pending requests in its queue, and/or an antici-
pated duration for addressing the pending requests in its
queue.

[0046] The prediction engine(s) 112 of system 110 can
receive vision data from vision components 194, 174A,
and/or 174B, and optionally other sensor data. The predic-
tion engine(s) 112 can each utilize a corresponding one of
the machine learning model(s) 165 to process the vision data
and/or other sensor data, to generate one or more predicted
object manipulation parameter(s) for manipulating an object
captured by the vision data. For example, one of the pre-
diction engine(s) 112 can process vision data, from addi-
tional vision component 194 and using a corresponding one
of the machine learning model(s) 165, to generate a pre-
dicted grasp pose for grasping of the spatula 192C. Also, for
example, one of the prediction engine(s) 112 can addition-
ally or alternatively process vision data, from additional

Jan. 28, 2021

vision component 194 and using a corresponding one of the
machine learning model(s) 165, to generate a predicted
placement pose for placement of the spatula 192C. Also, for
example, one of the prediction engine(s) 112 can addition-
ally or alternatively process vision data, from additional
vision component 194 and using a corresponding one of the
machine learning model(s) 165, to generate predicted way-
points to encounter in traversing to a grasp pose for the
spatula. As described herein, which prediction engine(s) 112
and corresponding machine learning model(s) 165 that are
online and used by the system 110 (if any) can vary over
time and can be dependent on sufficient training and/or
validation of the machine learning model(s) (e.g., by the
training engine 145).

[0047] Predicted object manipulation parameter(s) (if any)
that are generated by the prediction engine(s) 112 for a given
object manipulation, can be automatically used as manipu-
lation parameters by the manipulation parameters engine
116, can be first presented for confirmation by the visual
representation engine 114 before utilization, or can be dis-
carded and not utilized. For example, one of the prediction
engine(s) 112 can generate a predicted object manipulation
parameter, and a confidence measure for the predicted object
manipulation parameter. If the confidence measure satisfies
a first threshold, that prediction engine can specify that the
predicted object manipulation parameter is to be utilized by
the manipulation parameters engine 116 without prompting
for confirmation. If the confidence measure fails to satisfy
the first threshold, but satisfies a second threshold, that
prediction engine can specify that an indication of the
predicted object manipulation parameter is to be included,
by the visual representation engine 114, in a visual repre-
sentation—and only utilized if confirmatory user interface
input directed to the indication is received. If the confidence
measure fails to satisfy the first threshold and the second
threshold, that prediction engine can specify that the pre-
dicted object manipulation parameter not be utilized and that
the visual representation engine 114 prompt for defining of
a corresponding object manipulation parameter.

[0048] The visual representation engine 114 receives
vision data from vision components 194, 174A, and/or
1748, and generates a visual representation to transmit to the
remote client device 130 for rendering by the display engine
132 of the remote client device 130. The transmission to the
remote client device 130 can be via one or more networks
(not illustrated) such as the Internet or other wide area
network (WAN).

[0049] The visual representation generated by visual rep-
resentation engine 114 includes an object representation of
the at least one object captured by the vision data. For
example, the visual representation can include an object
representation of the spatula 192 captured in vision data
from the additional vision component 194. For instance, the
visual representation can include an object representation
that is a two-dimensional (2D) image of the spatula 192.
Examples of 2D images of the spatula 192 are illustrated in
FIGS. 2D and 2E, described in more detail below. Also, for
instance, the visual representation can include an object
representation that is a three-dimensional (3D) representa-
tion of the spatula 192. For instance, the 3D representation
of the spatula 192 can define positions (e.g., X, y, Z position)
for one or more points on a surface of the spatula, and can
optionally include one or more color values for each of the
positions. Examples of 3D representations of the spatula 192
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are illustrated in FIGS. 2A, 2B, and 2C, described in more
detail below. The visual representation can also optionally
include indication(s) of predicted object manipulation
parameter(s) (if any), from prediction engine(s) 112. An
example of a predicted object manipulation parameter from
prediction engine(s) 112 is illustrated in FIG. 2E, described
in more detail below. The visual representation can also
optionally include an environmental representation of other
environmental objects (e.g., a work surface, a container in
which the at least one object is to be placed) and/or a robot
representation of all or parts of the robot.

[0050] Insome implementations, the visual representation
generated by visual representation engine 114 and transmit-
ted to the remote client device 130 includes an object
representation of the object and optionally one or more
object representation(s) of other nearby dynamic object(s),
but omits other portion(s) that are static. In some of those
implementations, only the object and optionally nearby
dynamic objects are rendered at the remote client device
130. In some implementations, all or portions of the robot
and/or robot workspace are also rendered at the remote
client device 130, despite not being captured in the vision
data that is transmitted to the remote client device 130. For
example, the display engine 132 of the remote client device
can include a robotic simulator. The robotic simulator can
simulate all or parts of the robot and/or all or parts of the
robot workspace, and can render a simulation of the object
along with the robot simulation and/or robot workspace
simulation. The robotic simulator can be used to simulate an
environment that includes corresponding object(s), to simu-
late all or parts of a robot (e.g., at least end effector(s) of the
robot) operating in the simulated environment, and to
optionally simulate interactions between the simulated robot
and the simulated environmental objects in response to
simulated robotic actions. Various simulators can be utilized,
such as physics engines that simulates collision detection,
soft and rigid body dynamics, etc. One non-limiting example
of such a simulator is the BULLET physics engine.

[0051] As one particular example, the display engine 132
of the client device can receive a visual representation that
includes only a 3D object representation of an object to be
manipulated. The display engine 132 can place the 3D object
representation in a simulated robot workspace and/or rela-
tive to a simulated robot. For example, a robotic simulator
of'the display engine 132 can have a visual representation of
the robot workspace and/or of the robot pre-loaded, and can
place the 3D object representation relative to those objects.
When the object representation is based on vision data from
the additional vision component 194, the pose of the object
relative to the robot simulation and/or robot workspace
simulation can optionally be determined using a transfor-
mation between a pose of the additional vision component
194 and a pose of a corresponding one of the robotic vision
components 174A, 174B. The simulated robot can be set to
a default state (e.g., starting state), or a current state of the
robot (e.g., current positions of the joints) can optionally be
provided with the visual representation for rendering of the
simulated robot in the current state. Implementations that
simulate the robot and/or robot workspace enable smaller
data size visual representations to be transmitted from the
system 110 to remote client device 130.

[0052] Insome implementations, the visual representation
engine 114 generates object representations, of visual rep-
resentations to be rendered at a client device, that render
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objects with less accuracy than full representations, but are
a smaller data size than full representations. For example,
the visual representation engine 114 can generate an object
representation that includes one or more bounding boxes
and/or other bounding shapes that approximate surfaces of
the objects. For instance, the visual representation engine
114 can generate an object representation that consists of a
plurality of connected bounding boxes, each of which can be
defined by a center point, a height dimension, and a width
dimension. One non-limiting example of this is illustrated in
FIG. 2F, described in more detail below. The less detailed
object representations can be more data concise, thereby
conserving network resources. Moreover, the less detailed
object representations can mitigate delay in rendering the
visual representation at the remote device and/or can obfus-
cate or remove potentially sensitive data from object(s), or
obfuscate the objects themselves.

[0053] An operator of the remote client device 130 inter-
acts with a visual representation, provided by display engine
132, utilizing one or more input devices 136 of the remote
client device 130. The input device(s) 136 can include, for
example, a mouse, a touchscreen, VR hand controllers,
and/or VR gloves. The input device(s) 136 can form an
integral part of the remote client device (e.g., a touchscreen),
or can be peripheral devices that are coupled with the remote
device 130 using wired and/or wireless protocols.

[0054] The input engine(s) 134 of remote client device
130 process user interface input(s), provided via the input
device(s) 136, to generate data that indicates (directly or
indirectly) one or more object manipulation parameter(s) to
be used in an object manipulation. For example, the object
manipulation parameter(s) indicated by the data generated
by the input engine(s) 134 of an instance of user interface
input(s) can include: a grasp pose; a placement pose; a
sequence of waypoint(s) to encounter in traversing to a grasp
pose; a sequence of waypoints to encounter in traversing
toward a placement pose (after grasping the object); a full
path or trajectory (i.e., a path with velocity, acceleration,
jerk, and/or other parameter(s)) in traversing to and/or from
a manipulation pose (e.g., a grasp pose or other manipulation
pose); and/or other object manipulation parameter(s). The
user interface input(s) of an instance are provided by an
operator of the remote client device 130, with reference to
a visual representation rendered by display engine 132. For
instance, an instance of user interface inputs can indicate a
full trajectory that is utilized during assembly of a part
utilizing a plurality of component parts.

[0055] The manipulation parameters engine 116 deter-
mines the manipulation parameters based on the data pro-
vided by the input engine(s) 134. In some implementations,
the data directly defines the object manipulation parameters,
and the manipulation parameters engine 116 determines the
object manipulation parameters by utilizing the object
manipulation parameters defined by the data. In other imple-
mentations, the manipulation parameters engine 116 trans-
forms and/or otherwise processes the data in determining the
object manipulation parameters.

[0056] The manipulation parameter engine 116 transmits,
to the robot 170A or 170B, the determined object manipu-
lation parameter(s) and/or commands generated based on the
object manipulation parameter(s). In some implementations,
manipulation parameter engine 116 transmits the object
manipulation parameter(s) and/or high-level commands that
are based on the object manipulation parameter(s). In those
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implementations, a control system of the corresponding
robot transforms the object manipulation parameter(s) and/
or high-level commands to corresponding low-level actions,
such as control command(s) issued to actuators of the robot.
In other implementations, the object manipulation parameter
(s) can themselves define the low-level actions (e.g., when
a full trajectory is define via user interface input(s)) and/or
the low-level actions can be generated based on the object
manipulation parameter(s), and the manipulation parameter
engine 116 transmits the low-level actions to the correspond-
ing robot for control based on the low-level actions.

[0057] The training data engine 143 generates training
instances and stores the training instance in training data
database 152. Each of the training instances is generated for
a corresponding one of machine learning model(s) 165, and
is generated based on corresponding manipulation param-
eter(s) of an instance, vision data and/or other data for the
instance, and optionally a measure of success (also referred
to herein as a “success measure”) for the instance.

[0058] As one example, the training data engine 143 can
receive, from manipulation parameters engine 116, a
manipulation parameter utilized in controlling one of the
robots 170A, 1706 in performing a manipulation. The
manipulation parameter can be one generated based on user
interface input from the remote client device 130, predicted
by one of the prediction engine(s) 112 and confirmed based
on user interface input from the remote client device, or
predicted by one of the prediction engine(s) 112 and auto-
matically utilized. The training data engine 143 can further
receive vision data for the instance, such as vision data that
captures the object that was manipulated in the manipula-
tion. The vision data can be from the additional vision
component 194, or from one of the robotic vision compo-
nents 174A or 174B. It is noted that in some implementa-
tions the vision data utilized by training data engine 143 in
generating a training instance can differ from that utilized in
generating the object manipulation parameter. For example,
the object manipulation parameter can be defined based on
user interface input(s) directed to an object representation
generated based on vision data from additional vision com-
ponent 194, but vision data from robotic vision component
174A (that captures the object) can be used in generating the
training instance.

[0059] The training data engine 143 can optionally further
determine a measure of success of the manipulation (as a
whole, and/or of the portion directed to the object manipu-
lation parameter) based on vision data and/or data from
other sensor(s) 104. The other sensor(s) 104 can include, for
example, weight sensor(s) in the environment, non-vision
sensor(s) of the robot (e.g., torque sensors, position sensors),
and/or other sensor(s). The training data engine 143 can then
generate a training instance based on the vision data, the
object manipulation parameter, and optionally the measure
of success. For example, the training instance can include
the vision data and the object manipulation parameter (e.g.,
representations thereof) as training instance input, and the
measure of success as training instance output. As another
example, the training instance can include the vision data as
training instance input, the object manipulation parameter as
training instance output, and can be labeled as a positive or
negative training instance based on the measure of success.
As yet another example, the training instance can include the
vision data as training instance input and, as training
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instance output, a value that corresponds to the object
manipulation parameter and that is determined based on the
measure of success.

[0060] The training engine 145 trains the machine learning
model(s) 165 utilizing corresponding training instance of the
training data database 152. A trained machine learning
model can then be at least selectively utilized by one of the
prediction engine(s) 112 in predicting one or more corre-
sponding object manipulation parameters that are then at
least selectively utilized in controlling the robot(s). In some
implementations, a trained machine learning model is only
utilized, in predicting object manipulation parameters that
are at least selectively utilized, after the training engine 145
determines one or more conditions are satisfied. The one or
more conditions can include, for example, at least a thresh-
old amount of training and/or validation of the trained
machine learning model as described herein. In some imple-
mentations, the training data engine 143 and the training
engine 145 can implement one or more aspects of method
400 of FIG. 4, described in detail herein.

[0061] Turning now to FIG. 1B, an example is illustrated
ot how components of FIG. 1A can interact with one another
in accordance with various implementations described
herein. In FIG. 1B, vision data from additional vision
component 194 is provided to prediction engine(s) 112 and
to visual representation engine 114. For example, the vision
data can capture the spatula 192 illustrated in FIG. 1A. The
prediction engine(s) 112 can generate predicted object
manipulation parameter(s) 113, based on processing the
vision data using one or more machine learning model(s)
165. The visual representation engine 114 generates a visual
representation 115 that includes at least an object represen-
tation of an object, where the object representation is based
on object features of the vision data. In some implementa-
tions, the visual representation 115 can also include an
indication of the predicted object manipulation parameter(s)
113 (e.g., when corresponding confidence measure(s) indi-
cate confirmation is needed). Additionally or alternatively,
and as indicated by the dashed arrow, the predicted object
manipulation parameter(s) 113 can be provided directly to
the manipulation parameter(s) engine 116 without including
an indication thereof in the visual representation 115 or
soliciting confirmation (e.g., when corresponding confi-
dence measure(s) indicate confirmation is not needed).
[0062] The visual representation 115 is transmitted to the
display engine 132, which renders the visual representation,
optionally along with other simulated representation(s) (e.g.,
a simulated robot and/or a simulated workspace). Input data
135 is generated by input engine(s) 134 responsive to one or
more user interface inputs provided at one or more input
device(s) 136 and directed at the visual representation. The
input data 135 indicates, directly or indirectly, one or more
additional object manipulation parameter(s) and/or confir-
mation(s) of any predicted object manipulation parameter(s)
indicated in the visual representation 115.

[0063] The manipulation parameters engine 116 utilizes
the input data, and optionally any directly provided pre-
dicted object manipulation parameter(s) 113, to generate
object manipulation parameters 117 that are provided to
robot 170A for implementation. For example, robot 170A
can generate control commands that are based on the object
manipulation parameters 117, and can implement them
responsive to determining the object has entered the robot
workspace of robot 170A and/or is at a particular pose within
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the robot workspace. For example, the robot 170A can make
such determination(s) based on robotic vision data from
robotic vision component 174A.

[0064] The training data engine 143 can generate training
instance(s) 144 based on the implemented manipulation
parameters 117. Each of the training instance(s) 144 can
include training instance input that is based on vision data,
from additional vision component 194 and/or from robotic
vision component 174. Each of the training instance(s) 144
can further be based on a corresponding one of the manipu-
lation parameters 117 (e.g., the training instance input or
output can be based on a manipulation parameter). Each of
the training instance(s) 144 can further be based on a
corresponding success measure determined by training data
engine, based on vision data from vision component(s)
174A and/or 194, and/or based on data from other sensor(s)
104. The training instance(s) 144 are stored in training data
database 152, for utilization by training engine 145 (FIG. 1)
in training one or more of the machine learning model(s)
165.

[0065] Turning now to FIGS. 2A, 2B, 2C, 2D, 2E, and 2F,
each of those figures illustrates an example of a visual
representation that can be rendered at remote client device
130 (FIG. 1A) or other remote client devices. Each of the
visual representations includes an object representation of an
object to be manipulated by a robot, and illustrates examples
of user interface inputs that can be provided to define and/or
confirm object manipulation parameter(s) for manipulation
of the object by the robot.

[0066] FIG. 2A illustrates a visual representation that
includes a simulated environment with a robot simulation
270A of one of the robots of FIG. 1A. Further, an object
representation 292A of the spatula 192C of FIG. 1A is
illustrated in the simulated environment. As described
herein, the pose of the object representation 292A can be
determined based on vision data that captures the spatula
192C and is utilized to generate the object representation
292A, optionally taking into account a transformation to a
robot reference frame. The visual representation of FIG. 2A
can be rendered, for example, via a VR headset.

[0067] An operator has provided user interface input (e.g.,
via VR controller(s)) to define a path 289A1 of the end
effector of the robot from a starting pose (not illustrated) to
the illustrated grasp pose. The operator can, for example,
actuate a first virtual button (e.g., virtual button 282A1) or
hardware button to start defining of the path 289A1, and
actuate a second virtual or hardware button to define an end
of the path 289A1, which also constitutes the grasp pose.
Although not illustrated, it is noted that the simulated robot
270A can “move” during defining of the trajectory 289A1 to
provide the operator with visual feedback of the path 289A1
as it will be implemented by the robot 270A.

[0068] Also illustrated in FIG. 2A is a virtual button
282A2, which can be selected by the operator to use a
predefined path that was “saved” by the operator after being
defined for a previous instance of user interface inputs.
Selecting the virtual button 282A2 can paste the predefined
path into the virtual environment, along with an option for
the user to modify the pre-defined path to adapt it for the
particular object. Also illustrated in FIG. 2A is a virtual
button 282A3, which can be selected by the operator to
define the path 289A1 as a path that can later be selected as
“predefined path”. Enabling an operator to save and reuse
certain paths can reduce the amount of user interface input
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required to redefine that path, or a path that is a slight
variation of the predefined path. In addition, this can enable
a path for a current instance to be defined more quickly,
which can mitigate idle time of the robots while awaiting
definition of object manipulation parameter(s) and/or can
increase productivity of the operator.

[0069] FIG. 2B illustrates a visual representation that
includes a simulated environment with a robot simulation
270B of one of the robots of FIG. 1A. Further, an object
representation 292B of the spatula 192C of FIG. 1A is
illustrated in the simulated environment. An operator has
provided user interface input (e.g., via VR controller(s)) to
define waypoints 289B1 and 289B2 (in lieu of a full path)
and a grasp pose 289B3, where the waypoints are to be
encountered in traversing to the grasp pose 289B3, and the
grasp pose 289B3 is to be utilized in grasping the spatula
192C. The operator can, for example, actuate a first hard-
ware button (e.g., of a VR controller) in a first manner to
define the waypoints 289B1 and 289B2, and can actuate the
first hardware button in a second manner (or actuate a
second hardware button) to define the grasp pose 289B3.
Although not illustrated, it is noted that the simulated robot
270B can “move” during defining of the waypoints 289B1,
289B2 and/or of the grasp pose 289B3 to provide the
operator with visual feedback. Although not illustrated in
FIG. 2B, virtual buttons could also be provided for saving
the waypoints 289B1 and 289B2, and/or re-using (and
possibly adapting) pre-defined waypoints.

[0070] FIG. 2C illustrates a visual representation that
includes a simulated environment with a robot simulation
270C of one of the robots of FIG. 1A. Further, an object
representation 292C of the spatula 192C of FIG. 1A is
illustrated in the simulated environment. An operator has
provided user interface input (e.g., via VR controller(s)) to
define only a grasp pose 289C1. The operator can, for
example, actuate a first hardware button (e.g., of a VR
controller) to define the grasp pose 289C1. Although not
illustrated, it is noted that the simulated robot 270C can
“move” during defining of the grasp pose 289C1 to provide
the operator with visual feedback. In some implementations,
visual representations akin to FIGS. 2A and/or 2B can be
provided until machine learning model(s) are trained that
enable predicting of paths or waypoints that can at least
selectively be automatically implemented (without requiring
confirmation), and visual representations akin to FIG. 2C
can thereafter be provided for defining of only the grasp pose
via user interface input. Optionally, FIG. 2C can also visu-
ally indicate a predicted path and/or predicted waypoints,
and prompt for confirmation of the predicted waypoints or
path, or redefining of the predicted waypoints or path (if not
confirmed).

[0071] FIG. 2D illustrates a visual representation that
includes an object representation 292D, of the spatula 192C
of FIG. 1A, that is a 2D image (e.g., RGB image) of the
spatula. The visual representation can be rendered, for
example, on a touchscreen of a remote client device. The
operator of the client device is prompted, by indication
282D, to swipe on the touchscreen to define an antipodal
grasp. In response, the operator touches the touchscreen at
289D1 and swipes over to 289D2, at which point the
operator releases his/her touch. As a result, an antipodal
grasp is defined with a first point at 289D1 and a second
point at 289D2. The points 289D1 and 289D2 can be
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transformed from 2D to 3D points using, for example, a
mapping between the 2D image and corresponding 2.5D or
3D vision data.

[0072] FIG. 2E illustrates a visual representation that
includes an object representation 292F, of the spatula 192C
of FIG. 1A, that is a 2D image (e.g., RGB image) of the
spatula. The visual representation also include an indication
288E of a predicted antipodal grasp. The visual representa-
tion can be rendered, for example, on a screen of a remote
client device. The operator of the client device is prompted,
by indication 282E1, to confirm the predicted antipodal
grasp of indication 288E or, alternatively (by indication
282E2), to define an alternate grasp. If the operator agrees
with the predicted antipodal grasp of indication 288E, he/she
can simply click/tap the indication 282E1. If the operator
disagrees with the predicted antipodal grasp of indication
288E, he/she can click/tap the indication 282E2 and alter the
indication 288E (e.g., drag it up/down, change the width,
etc.) or define a new antipodal grasp from scratch.

[0073] FIG. 2F illustrates a visual representation that
includes an object representation 292F, of the spatula 192C
of FIG. 1A, that includes three connected bounding boxes
(dashed lines) that approximate surfaces of the spatula
192A. As described herein, the object representation 292F
can be more data efficient than the representation of FIGS.
2D and 2E and/or can prevent potentially sensitive data from
being viewed by an operator of the client device. The visual
representation can be rendered, for example, on a touch-
screen of a remote client device. The operator of the client
device is prompted, by indication 282DF, to swipe on the
touchscreen to define an antipodal grasp. In response, the
operator touches the touchscreen at 289F1 and swipes over
to 289FD2, at which point the operator releases his/her
touch. As a result, an antipodal grasp is defined with a first
point at 289F1 and a second point at 289F2.

[0074] Various examples of visual representations and
interactions with visual representations are illustrated in
FIGS. 2A-F. However, it is understood that additional and/or
alternative visual representations and/or interactions can be
utilized in various implementations disclosed herein.
[0075] Turning now to FIG. 3, an example method 300 is
illustrated of causing a robot to manipulate an object in
accordance with object manipulation parameter(s) deter-
mined based on data generated, at a remote client device,
responsive to a visual representation that includes an object
representation of the object. For convenience, some of the
operations of the method 300 are described with reference to
a system that performs the operations. This system may
include various components of various computer systems
and/or robots, such as one or more components depicted in
FIGS. 1A and 1B. Moreover, while operations of the method
300 are shown in a particular order, this is not meant to be
limiting. One or more operations may be reordered, omitted
or added.

[0076] At block 352, the system receives, from one or
more vision components, vision data that captures object
features of one or more objects. In some implementations or
iterations of method 300, the vision components are robotic
vision components that view a robot workspace of a corre-
sponding robot and the vision data captures the object
features when the object(s) are in the robot workspace. In
some other implementations or iterations, the vision com-
ponents are in a first area of an environment that is disparate
from a robot workspace of the environment, and the vision
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data captures the object features when the object(s) are in the
first area—and prior to completion of transporting of the
object(s) to the robot workspace. In some of those imple-
mentations, one or more of blocks 354, 356, 358, 360, 362,
and/or 364 can be completed prior to completion of trans-
porting of the object(s) to the robot workspace.

[0077] At optional block 354, the system generates, based
on vision data and prediction model(s), one or more pre-
dicted object manipulation parameters. For example, the
system can process vision data and/or other sensor data,
using a corresponding prediction model that has been trained
and brought online, to generate a predicted grasp pose, and
optionally a predicted probability for the predicted grasp
pose. As another example, the system can additionally or
alternatively process vision data and/or other sensor data,
using a corresponding prediction model that has been trained
and brought online, to generate a predicted classification of
an object to be grasped, and optionally a predicted prob-
ability for the predicted classification. The predicted classi-
fication can be used to determine a predicted placement
location for the object (e.g., in a particular container, of a
plurality of available containers, that corresponds to the
predicted classification). The predicted probability for the
predicted classification can optionally be utilized as the
probability for the predicted classification.

[0078] At optional block 356, the system determines
whether: (a) more object manipulation parameter(s), that are
in addition to the predicted manipulation parameter(s) of
block 354, are needed in order to manipulate the object;
and/or (b) whether one or more of the predicted object
manipulation parameter(s) need to be confirmed by remote
user interface input (e.g., due to a corresponding predicted
probability failing to satisfy a threshold).

[0079] If, at block 356, the determination(s) are “no”, the
system proceeds directly to block 360 and causes the robot
to manipulate an object in accordance with the object
manipulation parameters which, in such a situation, would
correspond to the predicted object manipulation parameters
of block 354.

[0080] If, at block 356, the determination(s) are “yes”, the
system proceeds to optional block 358, or to block 360.
[0081] Blocks 354 and 356 are illustrated as optional (as
indicated by dashed lines), as they may not be utilized in
method 300 in various implementations and/or as they can,
in other implementations, only be utilized in some iterations.
For example, in some of the other implementations, block
354 may only be implemented once at least one prediction
model has been trained and brought online, which can be
contingent on satisfaction of one or more conditions as
described herein.

[0082] At optional block 358, the system select a remote
client device, from multiple client devices. The system can
select the remote client device based on various consider-
ations. For example, the system can select the remote client
device responsive to determining the remote client device
does not currently have any requests for object manipulation
parameter(s) in its queue. Also, for example, the system can
select the remote client device additionally or alternatively
responsive to determining that a quantity of pending
requests for the remote client device and/or an anticipated
duration for pending requests, is less than that of other
candidate remote client device(s) (e.g., those available for
utilization in the environment in which the robot(s) utilized
in method 300 are deployed). As yet another example, the
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system can select the remote client device based on a
proficiency measure for an operator of the remote client
device. The proficiency measure can be based on past
success measures for manipulation(s) that are based on
object manipulation parameter(s) determined based on user
interface input(s) from the operator, and can be a global
proficiency measure or specific to one or more particular
manipulation(s) (e.g., a first proficiency measure for grasp-
ing and placing manipulations, a second proficiency mea-
sure for grasping two object and joining them manipula-
tions, etc.).

[0083] At block 360, the system transmits, to a remote
client device (e.g., the one selected at block 358), a visual
representation that is based on the vision data of block 352.
The visual representation includes at least an object repre-
sentation that is based on the object features of the vision
data of block 352. In some implementations, the object
representation comprises less data than the object features of
the vision data of block 352. For example, the object
representation can define bounding shape(s) that each
approximate a corresponding area of the object, without
defining color and/or other value(s) for individual pixels or
voxels encompassed by the bounding shape(s) in the vision
data. For instance, values for 64 pixels or voxels in the
vision data can be replaced by 7 values: 3 that define x, vy,
7 coordinates of a center of a bounding box, 2 that collec-
tively define an orientation of the bounding box, and two
that define width and height of the bounding box.

[0084] Insome implementations, the visual representation
transmitted at block 360 lacks any representation of a robot
and/or lacks any representation of one or more static objects
and/or other object(s) in the robot workspace of the robot. In
some of those implementations, the client device renders the
transmitted visual representation along with a simulation of
the robot and/or a simulation of all or parts of the robot
workspace. For example, the remote client device can
execute a robotic simulator that simulates the robot and the
robot workspace, and can render the object representation
within the robotic simulator and along with the simulated
robot and robot workspace. It is noted that this can conserve
network resources by obviating the need to transmit a
representation of the robot and/or robot workspace with each
transmission of a visual representation to a remote client
device. It is also noted that the simulated robot and/or
simulated robot workspace can be rendered, and the object
representation appropriately rendered therewith, even when
the vision data of block 352 is captured in the first area that
is disparate from the robot workspace.

[0085] Optionally, block 360 includes sub-block 360A, in
which the system generates the visual representation based
on the vision data, and based on the predicted manipulation
parameter(s) (if any) of block 354. For example, if a
predicted grasp pose is generated at block 354, an indication
of the predicted grasp pose can optionally be included in the
visual representation. For example, the indication of the
predicted gasp pose can be a representation of a robotic end
effector, rendered in the predicted grasp pose, along with the
object representation. An operator of the remote client
device can confirm the predicted grasp pose, or propose an
alternate grasp pose (e.g., by adjusting the representation of
the robotic end effector). As another example, if a predicted
series of waypoints is generated at block 354, an indication
of those waypoints can optionally be include in the visual
representation. For example, the indication of the waypoints
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can be circles or other indicia of the waypoints, rendered
along with the object representation and/or a robot simula-
tion.

[0086] At block 362, the system receives, from the remote
client device, data generated based on user interface input(s)
directed at the visual representation transmitted at block
360. The user interface input(s) can include those that define
(directly or indirectly) object manipulation parameter(s)
and/or those that confirm predicted object manipulation
parameter(s).

[0087] Atblock 364, the system determines, based on data
received at block 362, object manipulation parameter(s) for
use in manipulating the object, by a robot. The object
manipulation parameter(s) can include those that are based
on predicted object manipulation parameter(s) (if any) that
are indicated in the visual representation, if the data indi-
cates confirmation of those predicted object manipulation
parameter(s). The object manipulation parameter(s) can
additionally or alternatively include those that are defined,
based on the user interface input(s), independent of any
predicted object manipulation parameter(s).

[0088] In some implementations, the data generated at the
remote client device directly defines the object manipulation
parameters, and can be utilized directly as the object
manipulation parameters. In some other implementations,
the data indirectly defines the object manipulation param-
eters, and is further processed in determining the object
manipulation parameters. As one non-limiting example,
block 364 can optionally include sub-block 364 A, in which
the system transforms pose(s) and/or points to a robot frame
of the robot. For example, pose(s), point(s) (e.g., way-
points), and/or other features defined by the data received at
block 362 can be defined relative to a given frame that is
disparate from a robot frame, then transformed to the robot
frame. For instance, the given frame can be a first frame of
a vision component, of block 352, that is disparate from a
robot vision component of the robot.

[0089] At block 360, the system causes the robot to
manipulate the object in accordance with the object manipu-
lation parameter(s). The object manipulation parameters(s)
can include those that are based on predicted object manipu-
lation parameter(s) and/or those that are defined, based on
the user interface input(s), independent of any predicted
object manipulation parameter(s). In some implementations,
the system provides, to the robot, the object manipulation
parameter(s) and/or high-level commands that are based on
the object manipulation parameter(s). In those implementa-
tions, a control system of the robot transforms the object
manipulation parameter(s) and/or high-level commands to
corresponding low-level actions, such as control command
(s) issued to actuators of the robot. For example, the robot
can include a controller that translates high level commands
into more specific control commands to provide to one or
more actuators of the robot. The control commands can
include one or more velocity control command(s) issued to
actuator(s) of the robot at a corresponding instance, to
control movement of the robot. For example, in controlling
movement of the robot, velocity control commands can be
issued to each of the actuators that control movement of an
end effector of the robot. In other implementations, the
object manipulation parameter(s) can themselves define the
low-level actions (e.g., when a full trajectory is define via
user interface input(s)) and/or the low-level actions can be
generated based on the object manipulation parameter(s),



US 2021/0023711 Al

and the low-level action provided to the robot for control
based on the low-level actions.

[0090] In implementations where the vision components
are in a first area of an environment that is disparate from a
robot workspace of the environment, block 360 can include
causing the robot to manipulate the object further responsive
to determining the object is within the robot workspace. In
some of those implementations, the robot can determine the
object is within the robot workspace based on robot vision
data, from vision component(s) of the robot. In some addi-
tional or alternative implementations, the object can be
determined to be within the workspace based on data, from
the transporting mean(s) for the object, indicating the object
is within the workspace. For example, when the transporting
mean(s) include a conveyor system, a time of arrival of the
object within the robot workspace can be determined based
on operational data of the conveyor system.

[0091] After block 360, the system then returns to block
352. It is noted that in various implementations multiple
iterations of method 300 can be running in parallel for a
given environment, enabling visual representations for new
object(s) to be generated, transmitted, corresponding data
received, and/or corresponding object manipulation param-
eter(s) determined—prior to completion of method 300 for
a previous object (e.g., at least prior to completion of block
360). For example, multiple iterations of method 300 can be
running in parallel, each for a different robot of an environ-
ment. Also, for example, multiple iterations of method 300
can be running in parallel for a given robot, enabling object
manipulation parameter(s) to be determined for each of a
plurality of disparate objects, prior to those objects reaching
the robot workspace of the given robot and being manipu-
lated by the given robot.

[0092] Turning now to FIG. 4, an example method 400 is
illustrated of generating training instances based on robotic
object manipulation attempts, and using the training
instances in training prediction model(s). For convenience,
some of the operations of the method 400 are described with
reference to a system that performs the operations. This
system may include various components of various com-
puter systems and/or robots, such as one or more compo-
nents depicted in FIGS. 1A and 1B. Moreover, while opera-
tions of the method 400 are shown in a particular order, this
is not meant to be limiting. One or more operations may be
reordered, omitted or added.

[0093] At block 452, the system identifies: (1) object
manipulation parameter(s) utilized in an object manipulation
attempt by a robot; and (2) vision data associated with the
object manipulation attempt. For example, the object
manipulation parameter(s) can include a grasp pose and a
placement pose defined based on user interface input(s)
directed to a visual representation generated based on vision
data from a first area, and the vision data can robotic vision
data from a robot workspace, that is disparate from the first
area.

[0094] At optional block 454, the system generates, based
on sensor data from sensor(s), success measure(s) of the
object manipulation attempt. In some implementations, the
system generates a single success measure for the entire
object manipulation attempt. For example, for a pick and
place manipulation, the system can determine a single
success measure that is based on whether the object was
placed successfully and/or an accuracy of the placement. In
some other implementations, the system generates multiple
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success measures for the object manipulation attempt, with
each corresponding to a corresponding subset of object
manipulation parameter(s). For example, for a pick and
place manipulation, the system can determine a first success
measure for the pick manipulation (e.g., based on whether
the object was successfully grasped), and a second success
measure for the place manipulation (e.g., based on whether
the object was placed successfully and/or an accuracy of the
placement). The sensor(s) on which the success measure can
be based can include, for example, position sensor(s) of a
robot, torque sensor(s) of the robot, robot vision data from
vision component(s) of the robot, weight sensor(s) in the
environment, and/or other robot and/or environment sensor
(s)-

[0095] At block 456, the system generates training
instance(s) based on the object manipulation parameter(s),
the vision data, and optionally the success measure(s). As
indicated by the arrow from block 456 to block 452, the
system can continue to perform iterations of blocks 452,
454, and 456 to generate additional training instances based
on additional object manipulation attempts.

[0096] As an example of block 456, assume a pick and
place manipulation with grasp pose and placement pose
manipulation parameter(s). A first training instance can be
generated based on the vision data and the grasp pose, and
based on a success measure (e.g., a success measure for the
grasp or an overall success measure for the picking and
placing). For instance, the first training instance can be for
a grasp prediction model that approximates a value function,
and is used to process the vision data and the grasp pose, and
predict a probability of success of grasping the object using
the grasp pose, and in view of the vision data. In such an
instance, the training instance input would include the vision
data and the grasp pose (e.g., a representation of x, y, and z
positions, as well as orientation), and the training instance
output would include the success measure (e.g., a “0” if the
success measure indicated a failed grasp, and a “1” if the
success measure indicated a successful grasp). Also, for
instance, the first training instance can instead be for a
prediction model that processes vision data (without also
processing the grasp pose) and generates a corresponding
probability for each of N grasp poses. In such an instance,
the training instance input would include the vision data, and
the training instance output would include, if the success
measure indicated a successful grasp, a “1” for an output
value corresponding to the grasp pose, and optionally a “0”
for all other values. A second training instance can be
generated based on the vision data and the placement pose,
and based on a success measure (e.g., a success measure for
the grasp or an overall success measure for the picking and
placing). For instance, the second training instance can be
for a placement prediction model that approximates a value
function, and is used to process the vision data and the
placement pose, and predict a probability of placement of
the object being successful when using the grasp pose, in
view of the vision data. In such an instance, the training
instance input would include the vision data and the place-
ment pose (e.g., a representation of X, y, and z positions, as
well as orientation), and the training instance output would
include the success measure (e.g., a “0” if the success
measure indicated an unsuccessful placement, a “1” if the
success measure indicated a successful placement, a “0.7” if
the success measure indicated a successful, but not fully
accurate, placement, etc.).
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[0097] As another example of block 456, assume a
manipulation with manipulation parameter(s) that include a
sequence of waypoints defined based on user interface
input(s). A training instance can be generated based on the
vision data and the sequence of waypoints. For instance, the
training instance can be for a waypoints prediction model
that approximates a value function, and is used to process
the vision data and the sequence of waypoints, and predict
a probability of the sequence of waypoints in view of the
vision data. In such an instance, the training instance input
would include the vision data and a representation of the
sequence of waypoints (e.g., an embedding of the sequence
generated using a recurrent neural network model or trans-
former network), and the training instance output would
include a “1” (or other “positive” value) based on that
sequence having been defined based on user interface input
(s).

[0098] At block 458, the system uses a generated training
instance in updating parameters of a prediction model.
Where different training instances for different prediction
models were generated in block 456, an appropriate training
instance for a corresponding prediction model can be uti-
lized in each iteration of block 458. For example, some
iterations of block 458 can use a first type of training
instance to train a first prediction model, other iterations can
use a second type of training instance to train a second
prediction model, etc. Further, multiple iterations of blocks
458, 460, and 462 can optionally operate in parallel, each
devoted to training a corresponding prediction model.
[0099] At block 460, the system determines whether more
training is needed. In some implementations, this can be
based on whether a threshold quantity of training has
occurred, a threshold duration of training has occurred,
and/or whether one or more performance characteristics of
the prediction model have been observed (e.g., in use of the
prediction model, high probability predictions and/or suc-
cessful manipulations in at least X % of manipulations). In
some implementations, training of a prediction model can
continue indefinitely, at least on a periodic basis.

[0100] If the decision of block 460 is “yes”, the system
awaits availability of another training instance at block 462,
and proceeds back to block 458 on the basis of the available
training instance. If the decision of block 460 is “yes”, the
system proceeds to block 464 and ends training of the
prediction model (although training of other prediction
models can continue). A trained prediction model can be
utilized in method 300 or method 500, and can optionally
continue to be trained during utilization.

[0101] Turning now to FIG. 5, an example method 500 is
illustrated of selectively utilizing trained prediction model
(s) in determining object manipulation parameter(s) for use
by a robot in manipulating objects. Method 500 illustrates
some implementations of method 300. For convenience,
some of the operations of the method 500 are described with
reference to a system that performs the operations. This
system may include various components of various com-
puter systems and/or robots, such as one or more compo-
nents depicted in FIGS. 1A and 1B. Moreover, while opera-
tions of the method 500 are shown in a particular order, this
is not meant to be limiting. One or more operations may be
reordered, omitted or added.

[0102] At block 552, the system receives, from one or
more vision components, vision data that captures object
features of one or more objects. In some implementations or
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iterations of method 500, the vision components are robotic
vision components that view a robot workspace of a corre-
sponding robot and the vision data captures the object
features when the object(s) are in the robot workspace. In
some other implementations or iterations, the vision com-
ponents are in a first area of an environment that is disparate
from a robot workspace of the environment, and the vision
data captures the object features when the object(s) are in the
first area—and prior to completion of transporting of the
object(s) to the robot workspace. In some of those imple-
mentations, one or more of the blocks preceding block 572
can be completed prior to completion of transporting of the
object(s) to the robot workspace.

[0103] At block 554, the system selects one or more object
manipulation parameter(s), of a plurality of object manipu-
lation parameter(s) that need to be resolved for manipulation
of an object by a robot.

[0104] At block 556, the system determines, for the
selected object manipulation parameter(s), whether a trained
model for the object manipulation parameter(s) has been
brought online as described herein. If not, the system
proceeds to block 558 and prompts for the object manipu-
lation parameter(s) to be specified by user interface input(s)
at a remote client device. For example, the system can
generate a visual representation based on the vision data of
block 552, transmit the visual representation to the client
device, and, based on block 558, cause a prompt to be
rendered, at the client device, for defining the object
manipulation parameter(s) via user interface input directed
at the visual representation. Any object manipulation param-
eter(s), defined by user interface input(s) received respon-
sive to the prompt at block 558, can then be used as the
selected object manipulation parameters at block 570.
[0105] If, at block 556, the system determines, for the
selected object manipulation parameter(s), a trained model
for the object manipulation parameter(s) has been brought
online, the system proceeds to block 560.

[0106] Atblock 560, the system generates, based on vision
data of block 552 and prediction model(s), the predicted
object manipulation parameter(s) and corresponding confi-
dence measure(s). For example, the system can select pre-
diction model(s) that correspond to the object manipulation
parameter(s), and process vision data and/or other data using
the prediction model(s), to generate the predicted object
manipulation parameter(s) and corresponding confidence
measure(s).

[0107] The system then proceeds to block 562 and deter-
mines whether the confidence measure(s), for the predicted
object manipulation parameter(s) satisfy one or more thresh-
old(s) (e.g., 90% or other threshold). If not, the system
proceeds to block 564 and prompts for confirmation of the
predicted object manipulation parameter(s) at a remote
client device and/or prompts for corresponding object
manipulation parameter(s) to be specified by user interface
input(s) at the remote client device. For example, the system
can generate a visual representation that includes an indi-
cation of one or more of the predicted object manipulation
parameter(s), transmit the visual representation to the client
device, and, based on block 564, cause a prompt to be
rendered, at the client device. The prompt can solicit the
client device operator to confirm the predicted object
manipulation parameter(s) via user interface input, or to
define corresponding alternate object manipulation param-
eters via user interface input. Also, for example, the system
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can additionally or alternatively prompt for one or more of
the object manipulation parameter(s) to be specified by user
interface input(s) at a remote client device, without present-
ing the option to confirm the predicted object manipulation
parameter(s). In some implementations, if the confidence
measure for a given predicted object manipulation parameter
does not satisfy the threshold in block 562, but satisfies an
additional lower threshold (e.g., 65% or other threshold), the
system can cause the prompt for confirmation of the given
predicted object manipulation parameter. In those imple-
mentations, if the confidence measure of the given predicted
object manipulation parameter does not satisfy the addi-
tional lower threshold, the system can prompt for a corre-
sponding object manipulation parameter to be defined,
optionally without providing any indication of the given
predicted object manipulation parameter. Any object
manipulation parameter(s), defined by user interface input(s)
received responsive to block 564, can then be used as all or
part of the selected object manipulation parameters at block
570.

[0108] If the system determines, at block 562, that the
confidence measure(s) satisfy the threshold(s), the system
proceeds to block 566 and uses the predicted object manipu-
lation parameter(s) without prompting for confirmation of
the predicted object manipulation parameters.

[0109] At block 568, the system then determines whether
there are more object manipulation parameter(s) that need to
be resolved for the manipulation of the object by the robot.
If so, the system proceeds back to block 554 and selects an
additional object manipulation parameter. If not, the system
proceeds to block 572. It is noted that in an instance of
method 500 where the decision at block 556 or block 562 is
“no” for more than one iteration of block 556 or block 562,
the prompting at the client device can be a single prompt that
requests the object manipulation parameters be defined
and/or confirmed for all object manipulation parameters
where the “no” decision was made at block 556 or block
562. In other words, there won’t necessarily be N separate
prompts for each of N iterations. Rather, there can optionally
be a single prompt that encompasses requests for each of the
N iterations.

[0110] At block 572, the system causes the robot to
manipulate the object in accordance with the object manipu-
lation parameter(s). The object manipulation parameters(s)
can include those from one or more iterations of block 566
and/or from one or more iterations of block 570. For
example, the object manipulation parameter(s) can include
those that are based on predicted object manipulation param-
eter(s) (with or without confirmation) and/or those that are
defined, based on the user interface input(s), independent of
any predicted object manipulation parameter(s).

[0111] The system then returns to block 552. It is noted
that in various implementations multiple iterations of
method 500 can be running in parallel for a given environ-
ment, enabling visual representations for new object(s) to be
generated, transmitted, corresponding data received, and/or
corresponding object manipulation parameter(s) deter-
mined—yprior to completion of method 500 for a previous
object (e.g., at least prior to completion of block 572).
[0112] Turning now to FIG. 6, an example method 600 is
illustrated of training a prediction model, validating the
prediction model, deploying the prediction model, and
optionally further training the deployed prediction model.
For convenience, some of the operations of the method 600
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are described with reference to a system that performs the
operations. This system may include various components of
various computer systems and/or robots, such as one or more
components depicted in FIGS. 1A and 1B. Moreover, while
operations of the method 600 are shown in a particular order,
this is not meant to be limiting. One or more operations may
be reordered, omitted or added.

[0113] At block 652, the system trains a prediction model
based on data from operator-guided object manipulation
attempts. For example, the system can train the prediction
model based on training instances generated in blocks 452,
454, and 456 of method 400.

[0114] At block 654, the system determines whether one
or more conditions have been satisfied. If not, the system
returns to block 652. If so, the system proceeds to block 656.
The condition(s) considered at block 654 can include, for
example, a threshold quantity of training instances having
been utilized in training in block 652 and/or a threshold
duration of training at block 652.

[0115] At block 656, the system attempts to validate the
prediction model based on comparing predictions, generated
using the prediction model, to operator-guided ground truth.
For example, the system can compare predicted object
manipulation parameters, made utilizing the model, to cor-
responding object manipulation parameters defined based on
user interface input(s) (i.e., operator-guided ground truths).
The system can determine error measures, for the predic-
tions, based on the comparisons. The operator-guided
ground truths can optionally be verified based on determined
success measures. In other words, the operator-guided
ground truths can be considered ground-truths only if cor-
responding success measures indicate overall success of the
corresponding manipulation and/or success for the portion
(s) of the manipulation corresponding to the defined object
manipulation parameters.

[0116] At block 658, the system determines whether the
validation was successful. If not, the system proceeds back
to block 652, and optionally adjusts the condition(s) of block
654 (e.g., to require a greater extent of training). In deter-
mining whether the validation was successful, various met-
rics can be utilized. For example, the system can determine
a successful validation is at least a threshold percentage of
predictions have less than a threshold error measure based
on comparisons of block 656.

[0117] If the decision at block 658 is that the validation is
successful, the system proceeds to block 660. At block 660,
the system deploys the prediction model for use in generated
suggested and/or automatically implemented predictions.
For example, the prediction model can be deployed for use
in method 300 and/or method 500.

[0118] At optional block 662, the system further trains the
prediction model based on operator feedback to suggestions
during deployment and/or based on sensor-based success
measures during deployment.

[0119] FIG. 7 schematically depicts an example architec-
ture of a robot 725. The robot 725 includes a robot control
system 760, one or more operational components 740a-
7407, and one or more sensors 742a-742m. The sensors
742a-742m may include, for example, vision components,
light sensors, pressure sensors, pressure wave sensors (e.g.,
microphones), proximity sensors, accelerometers, gyro-
scopes, thermometers, barometers, and so forth. While sen-
sors 742a-742m are depicted as being integral with robot
725, this is not meant to be limiting. In some implementa-
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tions, sensors 742a-742m may be located external to robot
725, e.g., as standalone units.

[0120] Operational components 740a-740r may include,
for example, one or more end effectors and/or one or more
servo motors or other actuators to effectuate movement of
one or more components of the robot. For example, the robot
725 may have multiple degrees of freedom and each of the
actuators may control actuation of the robot 725 within one
or more of the degrees of freedom responsive to the control
commands. As used herein, the term actuator encompasses
a mechanical or electrical device that creates motion (e.g., a
motor), in addition to any driver(s) that may be associated
with the actuator and that translate received control com-
mands into one or more signals for driving the actuator.
Accordingly, providing a control command to an actuator
may comprise providing the control command to a driver
that translates the control command into appropriate signals
for driving an electrical or mechanical device to create
desired motion.

[0121] The robot control system 760 may be implemented
in one or more processors, such as a CPU, GPU, and/or other
controller(s) of the robot 725. In some implementations, the
robot 725 may comprise a “brain box” that may include all
or aspects of the control system 760. For example, the brain
box may provide real time bursts of data to the operational
components 740a-740n, with each of the real time bursts
comprising a set of one or more control commands that
dictate, inter alio, the parameters of motion (if any) for each
of one or more of the operational components 740a-740z. In
some implementations, the robot control system 760 may
perform one or more aspects of one or more methods
described herein.

[0122] As described herein, in some implementations all
or aspects of the control commands generated by control
system 760 can be generated based on objet manipulation
parameter(s) generated according to techniques described
herein. Although control system 760 is illustrated in FIG. 7
as an integral part of the robot 725, in some implementa-
tions, all or aspects of the control system 760 may be
implemented in a component that is separate from, but in
communication with, robot 725. For example, all or aspects
of control system 760 may be implemented on one or more
computing devices that are in wired and/or wireless com-
munication with the robot 725, such as computing device
810.

[0123] FIG. 8 is a block diagram of an example computing
device 810 that may optionally be utilized to perform one or
more aspects of techniques described herein. For example,
in some implementations computing device 810 may be
utilized to execute simulator 120, sim difference engine 130,
real episode system 110, sim training data system 140,
and/or training engine 145. Computing device 810 typically
includes at least one processor 814 which communicates
with a number of peripheral devices via bus subsystem 812.
These peripheral devices may include a storage subsystem
824, including, for example, a memory subsystem 825 and
a file storage subsystem 826, user interface output devices
820, user interface input devices 822, and a network inter-
face subsystem 816. The input and output devices allow user
interaction with computing device 810. Network interface
subsystem 816 provides an interface to outside networks and
is coupled to corresponding interface devices in other com-
puting devices.
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[0124] User interface input devices 822 may include a
keyboard, pointing devices such as a mouse, trackball,
touchpad, or graphics tablet, a scanner, a touchscreen incor-
porated into the display, audio input devices such as voice
recognition systems, microphones, and/or other types of
input devices. In general, use of the term “input device” is
intended to include all possible types of devices and ways to
input information into computing device 810 or onto a
communication network.

[0125] User interface output devices 820 may include a
display subsystem, a printer, a fax machine, or non-visual
displays such as audio output devices. The display subsys-
tem may include a cathode ray tube (CRT), a flat-panel
device such as a liquid crystal display (LCD), a projection
device, or some other mechanism for creating a visible
image. The display subsystem may also provide non-visual
display such as via audio output devices. In general, use of
the term “output device” is intended to include all possible
types of devices and ways to output information from
computing device 810 to the user or to another machine or
computing device.

[0126] Storage subsystem 824 stores programming and
data constructs that provide the functionality of some or all
of the modules described herein. For example, the storage
subsystem 824 may include the logic to perform selected
aspects of one or more methods described herein.

[0127] These software modules are generally executed by
processor 814 alone or in combination with other proces-
sors. Memory 825 used in the storage subsystem 824 can
include a number of memories including a main random
access memory (RAM) 830 for storage of instructions and
data during program execution and a read only memory
(ROM) 832 in which fixed instructions are stored. A file
storage subsystem 826 can provide persistent storage for
program and data files, and may include a hard disk drive,
a floppy disk drive along with associated removable media,
a CD-ROM drive, an optical drive, or removable media
cartridges. The modules implementing the functionality of
certain implementations may be stored by file storage sub-
system 826 in the storage subsystem 824, or in other
machines accessible by the processor(s) 814.

[0128] Bus subsystem 812 provides a mechanism for
letting the various components and subsystems of comput-
ing device 810 communicate with each other as intended.
Although bus subsystem 812 is shown schematically as a
single bus, alternative implementations of the bus subsystem
may use multiple busses.

[0129] Computing device 810 can be of varying types
including a workstation, server, computing cluster, blade
server, server farm, or any other data processing system or
computing device. Due to the ever-changing nature of
computers and networks, the description of computing
device 810 depicted in FIG. 8 is intended only as a specific
example for purposes of illustrating some implementations.
Many other configurations of computing device 810 are
possible having more or fewer components than the com-
puting device depicted in FIG. 8.

[0130] In some implementations, a method is provided
that includes receiving, from one or more vision components
in a first area of an environment, vision data that captures
features of the first area at a first time. The captured features
include object features of an object that is located in the first
area at the first time. The method further includes, prior to
completion of transporting of the object from the first area
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to a disparate robot workspace, of the environment, that is
not captured by the vision data: transmitting, via one or more
networks to a remote client device, a visual representation
that is generated based on the vision data; and receiving, via
the one or more networks and from the remote client device,
data that is generated based on one or more user interface
inputs. The visual representation includes an object repre-
sentation generated based on the object features. The user
interface input(s) are at the remote client device, and are
directed at the visual representation when rendered at the
remote client device. The method further includes determin-
ing, based on the data, one or more object manipulation
parameters for manipulating of the object by a robot oper-
ating in the robot workspace. The method further includes
causing the robot to manipulate the object, in accordance
with the one or more object manipulation parameters,
responsive to detecting the object is within the robot work-
space. The object is within the robot workspace after trans-
porting of the object from the first area to the robot work-
space and at a second time that is subsequent to the first time.
[0131] These and other implementations of the technology
disclosed herein can include one or more of the following
features.

[0132] In some implementations, determining the one or
more object manipulation parameters is also prior to
completion of transporting of the object from the first area
to the robot workspace.

[0133] In some implementations, the one or more object
manipulation parameters include a grasp pose for grasping
of the object. In those implementations, causing the robot to
manipulate the object, in accordance with the one or more
object manipulation parameters, responsive to the object
being detected within the robot workspace after the trans-
porting includes causing an end effector of the robot to
traverse to the grasp pose, and attempt a grasp of the object
after traversing to the grasp pose.

[0134] In some implementations, the data defines one or
more poses and/or one or more points relative to a first
reference frame. In some of those implementations, gener-
ating the one or more object manipulation parameters
includes transforming the one or more poses and/or the one
or more points to a robot frame that is disparate from the
reference frame, and using the transformed poses and/or
points in generating the object manipulation parameters.
[0135] In some implementations, the method further
includes, subsequent to causing the robot to manipulate the
object: determining, based on additional sensor data from
one or more additional sensors, a measure of success of the
manipulation; generating a positive training instance based
on the measure of success satisfying a threshold; and train-
ing a machine learning model based on the positive training
instance. In some versions of those implementations, the one
or more additional sensors include: the robot vision com-
ponents, a torque sensor of the robot, and/or a weight sensor
in the environment. In some additional or alternative ver-
sions of those implementations, generating the positive
training instance includes: generating training instance
input, of the positive training instance, based on the vision
data or based on robot vision data from one or more robot
vision components of the robot; and/or generating training
instance output, of the positive training instance, based on
the object manipulation parameters. In some of those addi-
tional or alternative versions, the method further includes,
subsequent to training the machine learning model based on
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the positive training instance: processing, using the machine
learning model, additional vision data that captures an
additional object; generating, based on the processing, one
or more predicted object manipulation parameters for the
additional object; and causing the robot to manipulate the
additional object in accordance with the one or more pre-
dicted object manipulation parameters. Additionally, the
method can further optionally include: transmitting, to the
remote client device or to an additional remote client device,
a visual indication of the predicted object manipulation
parameters; and receiving, from the remote client device or
the additional remote client device, an indication that affir-
mative user interface input was received responsive to
presentation of the visual indication of the predicted object
manipulation parameters. Causing the robot to manipulate
the additional object in accordance with the one or more
predicted object manipulation parameters can be responsive
to receiving the indication that affirmative user interface
input was received. Optionally, the method further includes
generating, based on the processing, a confidence measure
for the one or more predicted object manipulation param-
eters. Transmitting the visual indication of the predicted
object manipulation parameters can be responsive to the
confidence measure failing to satisfy a threshold confidence
measure. Additionally or alternatively, the method can fur-
ther optionally include, subsequent to training the machine
learning model based on the positive training instance:
processing, using the machine learning model, additional
vision data that captures an additional object; generating,
based on the processing, one or more predicted object
manipulation parameters for the additional object; transmit-
ting, to the remote client device or to an additional remote
client device, a visual indication of the predicted object
manipulation parameters; receiving, from the remote client
device or the additional remote client device, an indication
of alternate object manipulation parameters defined via user
interface input received responsive to presentation of the
visual indication of the predicted object manipulation
parameters; and causing, responsive to receiving the alter-
nate object manipulation parameters, the robot to manipulate
the additional object in accordance with the one or more
alternate object manipulation parameters. The method can
optionally further include further training the machine learn-
ing model using a training instance with a labeled output that
is based on the alternate object manipulation parameters.

[0136] In some implementations, the method further
includes, prior to the robot manipulating the object: receiv-
ing, from the one or more vision components in the first area,
vision data that captures features of the first area at a third
time that is after the first time but before the second time,
where the vision data includes new object features of a new
object that is located in the first area at the third time;
transmitting, to the remote client device, a new visual
representation that is generated based on the new vision
data, the new visual representation including a new object
representation generated based on the new object features;
receiving, from the remote client device, new data that is
generated based on one or more new user interface inputs,
at the remote client device, that are directed at the new visual
representation when rendered at the remote client device;
and determining, based on the data, one or more new object
manipulation parameters for manipulating of the new object
by a robot operating in the robot workspace. In some of
those implementations, the method further includes, subse-
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quent to the robot manipulating the object: causing the robot
to manipulate the new object, in accordance with the one or
more new object manipulation parameters, responsive to the
robot detecting, via the one or more robot vision compo-
nents, the new object is within the robot workspace. The new
object is within the robot workspace after transporting of the
new object and at a fourth time that is subsequent to the
second time.

[0137] In some implementations, the transporting of the
object from the first area to the robot workspace is via one
Or more conveyors.

[0138] In some implementations, the method further
includes accessing, for each of a plurality of remote client
devices, corresponding queue data that defines a quantity
and/or duration of outstanding robot manipulation assistant
requests. In some of those implementations, the method
further includes selecting the remote client device, from the
plurality of remote client devices, based on the correspond-
ing query data for the remote client device. Transmitting the
visual representation to the remote client device can be
responsive to selecting the remote client device.

[0139] Insome implementations, the object representation
is a rendering of the object, wherein the rendering is
generated based on the object features and omits one or more
features, of the object, that are visible in the vision data.
[0140] In some implementations, detecting the object is in
the robot workspace is by the robot based on robot vision
data from one or more robot vision components of the robot.
[0141] In some implementations, a method is provided
that includes receiving, from one or more vision components
in an environment, vision data that captures features of the
environment, including object features of an object that is
located in the environment. The method further includes
generating, based on processing the vision data using a
machine learning model: a predicted object manipulation
parameter for the object, and a confidence measure for the
predicted object manipulation parameter. The method fur-
ther includes determining whether the confidence measure,
for the predicted object manipulation parameter, satisfies a
threshold confidence measure. The method further includes,
responsive to determining the confidence measure fails to
satisfy the threshold confidence measure: transmitting, via
one or more networks to a remote client device: (1) an object
representation of the object that is generated based on the
object features and (2) a visual indication of the predicted
object manipulation parameter; and receiving, via the one or
more networks and from the remote client device, data that
is generated based on one or more user interface inputs. The
user interface input(s) are at the remote client device and are
responsive to rendering the object representation and the
visual indication at the remote client device. The method
further includes determining, based on the data, to utilize
either the object manipulation parameter or an alternative
object manipulation parameter. The method further includes
causing a robot to manipulate the object in accordance with
the determined object manipulation parameter or the alter-
native object manipulation parameter. The method further
includes, responsive to determining the confidence measure
satisfies the threshold confidence measure: causing the robot
to manipulate the object in accordance with the object
manipulation parameter, and without transmitting the visual
indication to any remote client device for confirmation prior
to manipulating the object in accordance with the object
manipulation parameter.
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[0142] These and other implementations of the technology
disclosed herein can include one or more of the following
features.

[0143] In some implementations, the vision components
are in a first area of the environment, and determining
whether the confidence measure, for the predicted object
manipulation parameter, satisfies the threshold confidence
measure, occurs prior to transporting of the object to a
disparate robot workspace of the robot.

What is claimed is:

1. A method comprising:

receiving, from one or more vision components in a first

area of an environment, vision data that captures fea-
tures of the first area at a first time, including object
features of an object that is located in the first area at
the first time;

prior to completion of transporting of the object from the

first area to a disparate robot workspace, of the envi-
ronment, that is not captured by the vision data:
transmitting, via one or more networks to a remote
client device, a visual representation that is gener-
ated based on the vision data, the visual representa-
tion including an object representation generated
based on the object features, and
receiving, via the one or more networks and from the
remote client device, data that is generated based on
one or more user interface inputs, at the remote client
device, that are directed at the visual representation
when rendered at the remote client device;
determining, based on the data, one or more object
manipulation parameters for manipulating of the object
by a robot operating in the robot workspace; and
causing the robot to manipulate the object, in accordance
with the one or more object manipulation parameters,
responsive to detecting the object is within the robot
workspace, wherein the object is within the robot
workspace after transporting of the object from the first
area to the robot workspace and at a second time that
is subsequent to the first time.

2. The method of claim 1, wherein determining the one or
more object manipulation parameters is also prior to
completion of transporting of the object from the first area
to the robot workspace.

3. The method of claim 1, wherein the one or more object
manipulation parameters include a grasp pose for grasping
of the object, and wherein causing the robot to manipulate
the object, in accordance with the one or more object
manipulation parameters, responsive to the object being
detected within the robot workspace after the transporting
comprises:

causing an end effector of the robot to traverse to the grasp

pose, and attempt a grasp of the object after traversing
to the grasp pose.

4. The method of claim 1, wherein the data defines one or
more poses and/or one or more points relative to a first
reference frame, and wherein generating the one or more
object manipulation parameters comprises:

transforming the one or more poses and/or the one or

more points to a robot frame that is disparate from the
reference frame; and

using the transformed poses and/or points in generating

the object manipulation parameters.
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5. The method of claim 1, further comprising:

subsequent to causing the robot to manipulate the object:

determining, based on additional sensor data from one
or more additional sensors, a measure of success of
the manipulation;

generating a positive training instance based on the
measure of success satisfying a threshold; and

training a machine learning model based on the positive
training instance.

6. The method of claim 5, wherein the one or more
additional sensors include: the robot vision components, a
torque sensor of the robot, or a weight sensor in the
environment.

7. The method of claim 5, wherein generating the positive
training instance comprises generating training instance
input, of the positive training instance, based on the vision
data or based on robot vision data from one or more robot
vision components of the robot.

8. The method of claim 7, wherein generating the positive
training instance comprises generating training instance
output, of the positive training instance, based on the object
manipulation parameters.

9. The method of claim 8, further comprising:

subsequent to training the machine learning model based

on the positive training instance, further comprising:

processing, using the machine learning model, addi-
tional vision data that captures an additional object;

generating, based on the processing, one or more
predicted object manipulation parameters for the
additional object; and

causing the robot to manipulate the additional object in
accordance with the one or more predicted object
manipulation parameters.

10. The method of claim 9, further comprising:

transmitting, to the remote client device or to an addi-

tional remote client device, a visual indication of the
predicted object manipulation parameters;

receiving, from the remote client device or the additional

remote client device, an indication that affirmative user
interface input was received responsive to presentation
of the visual indication of the predicted object manipu-
lation parameters;

wherein causing the robot to manipulate the additional

object in accordance with the one or more predicted
object manipulation parameters is responsive to receiv-
ing the indication that affirmative user interface input
was received.

11. The method of claim 10, further comprising:

generating, based on the processing, a confidence measure

for the one or more predicted object manipulation
parameters;

wherein transmitting the visual indication of the predicted

object manipulation parameters is responsive to the
confidence measure failing to satisfy a threshold con-
fidence measure.

12. The method of claim 8, further comprising:

subsequent to training the machine learning model based

on the positive training instance, further comprising:

processing, using the machine learning model, addi-
tional vision data that captures an additional object;

generating, based on the processing, one or more
predicted object manipulation parameters for the
additional object;
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transmitting, to the remote client device or to an
additional remote client device, a visual indication of
the predicted object manipulation parameters;

receiving, from the remote client device or the addi-
tional remote client device, an indication of alternate
object manipulation parameters defined via user
interface input received responsive to presentation of
the visual indication of the predicted object manipu-
lation parameters; and

causing, responsive to receiving the alternate object
manipulation parameters, the robot to manipulate the
additional object in accordance with the one or more
alternate object manipulation parameters.

13. The method of claim 12, further comprising:

further training the machine learning model using a

training instance with a labeled output that is based on
the alternate object manipulation parameters.

14. The method of claim 1, further comprising, prior to the
robot manipulating the object:

receiving, from the one or more vision components in the

first area, vision data that captures features of the first
area at a third time that is after the first time but before
the second time, wherein the vision data includes new
object features of a new object that is located in the first
area at the third time;

transmitting, to the remote client device, a new visual

representation that is generated based on the new vision
data, the new visual representation including a new
object representation generated based on the new object
features;

receiving, from the remote client device, new data that is

generated based on one or more new user interface
inputs, at the remote client device, that are directed at
the new visual representation when rendered at the
remote client device; and

determining, based on the data, one or more new object

manipulation parameters for manipulating of the new
object by a robot operating in the robot workspace.

15. The method of claim 14, further comprising, subse-
quent to the robot manipulating the object:

causing the robot to manipulate the new object, in accor-

dance with the one or more new object manipulation
parameters, responsive to the robot detecting, via the
one or more robot vision components, the new object is
within the robot workspace, wherein the new object is
within the robot workspace after transporting of the
new object and at a fourth time that is subsequent to the
second time.

16. The method of claim 1, wherein the transporting of the
object from the first area to the robot workspace is via one
Or mMore conveyors.

17. The method of claim 1, further comprising:

accessing, for each of a plurality of remote client devices,

corresponding queue data that defines a quantity and/or
duration of outstanding robot manipulation assistant
requests; and

selecting the remote client device, from the plurality of

remote client devices, based on the corresponding
query data for the remote client device;

wherein transmitting the visual representation to the

remote client device is responsive to selecting the
remote client device.

18. The method of claim 1, wherein the object represen-
tation is a rendering of the object, wherein the rendering is
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generated based on the object features and omits one or more
features, of the object, that are visible in the vision data.
19. The method of claim 1, wherein detecting the object
is in the robot workspace is by the robot based on robot
vision data from one or more robot vision components of the
robot.
20. A method, comprising:
receiving, from one or more vision components in an
environment, vision data that captures features of the
environment, including object features of an object that
is located in the environment;
generating, based on processing the vision data using a
machine learning model:
a predicted object manipulation parameter for the
object, and
a confidence measure for the predicted object manipu-
lation parameter;
determining whether the confidence measure, for the
predicted object manipulation parameter, satisfies a
threshold confidence measure;
responsive to determining the confidence measure fails to
satisfy the threshold confidence measure:
transmitting, via one or more networks to a remote
client device, an object representation of the object
that is generated based on the object features and a
visual indication of the predicted object manipula-
tion parameter,
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receiving, via the one or more networks and from the
remote client device, data that is generated based on
one or more user interface inputs, at the remote client
device, responsive to rendering the object represen-
tation and the visual indication at the remote client
device,

determining, based on the data, to utilize either the
object manipulation parameter or an alternative
object manipulation parameter, and

causing a robot to manipulate the object in accordance
with the determined object manipulation parameter
or the alternative object manipulation parameter; and

responsive to determining the confidence measure satis-

fies the threshold confidence measure:

causing the robot to manipulate the object in accor-
dance with the object manipulation parameter, and
without transmitting the visual indication to any
remote client device for confirmation prior to
manipulating the object in accordance with the
object manipulation parameter.

21. The method of claim 20, wherein the vision compo-
nents are in a first area of the environment, and wherein
determining whether the confidence measure, for the pre-
dicted object manipulation parameter, satisfies the threshold
confidence measure, occurs prior to transporting of the
object to a disparate robot workspace of the robot.
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